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ABSTRACT 

For a simple non-compact Lie group G with finite center we determine the 

smallest integer n(G) such that  G has an almost effective action on a com- 

pact manifold of dimension n(G) and characterize the compact manifolds 

of dimension n(G) on which G acts. We study actions of a semisimple 

group G on compact manifolds of dimension n(G) + 1 and determine the 

orbit structure of the action of G and its maximal compact subgroup. We 

give several examples to illustrate the results. 

Introduction 

Our goal in this paper is to obtain a fairly thorough understanding of the orbit 

structure of low dimensional actions of semisimple Lie groups. One of the starting 

points for this investigation is a classical result of Mostert [10] which asserts 

that if K is a compact group acting on a closed manifold M with an orbit of 

codimension one then the orbit space M/K is homeomorphic to S 1 or to the 

closed unit interval I, and in the former case, the K-orbits fiber M over S 1. The 

principle result of this paper is an analogue of Mostert's theorem for actions of 

non-compact semisimple Lie groups on closed manifolds. 

One sees quickly that the direct analogue of Mostert's theorem is false for 

noncompact groups. For example, let G = SL(2, R) and consider the natural 

embedding of SL(2, R) in SL(3, R) as the subgroup of matrices of the form 

d . 
0 
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Let P be the stabilizer in SL(3,R) of the z-axis in R 3, and let G act on the 

manifold SL(3,R)/P = RP 2 by left translation. There are three G orbits: a 

fixed point corresponding to the z-axis; an RP 1 corresponding to the x - Y 

plane; and the complement of these two compact orbits. Thus the orbit space 

G\RP 2 consists of three points, two of which are closed in the quotient topology. 

Another example is obtained by taking the adjoint representation of SL(2, R), 

Ad: SL(2, R) --* SL(3, R), followed by the natural embedding of SL(3, R) in 

SL(4, R). One obtains an action of SL(2, R) on RP ~ with orbits of dimensions 0, 

1, and 2. The orbit structure in this example is already quite complicated. These 

examples indicate not only that Mostert's theorem is false for noncompact groups, 

but also that the hypothesis of an orbit of codimension one does not impose very 

strong restrictions on the orbit structure of an action of a non-compact group. 

In order to find a hypothesis which is suitable for noneompact groups we recast 

a special case of Mostert's theorem. For any connected Lie group G let n(G) be 

the minimum dimension of a closed manifold on which G acts smoothly mad 

almost effectively. (Recall that a group action is a lmost  effective if the kernel 

of the action is discrete.) 

COROLLARY TO MOSTERT~S THEOREM: Let K be a compact group. If K acts 

almost effectively on a dosed manifold of dimension n(K) + 1, then M / K  is 

homeomorphic to S 1, I, or a single point. 

Proof: Since the nontrivial orbits of K must have dimension at least n(K), we 

see that either K acts transitively on M, in which case M / K  is a point, or there 

is an orbit of codimension one, in which case Mostert's theorem applies. | 

We prove the following analogue of Mostert's theorem. 

THEOREM 6.9: Let G be a connected semisimple reed Lie group with finite cen- 

ter. Suppose G acts smoothly and almost effectively on a dosed manifold M of 

dimension n( G) + 1. Let K be the maxima/compact subgroup of G. Then M /  K 

is homeomorphic to S 1, I, or a point. In the first case the K-orbits fiber M over 

S 1 . 

Since the G-orbits are connected K-saturated subsets of M we deduce imme- 

diately 

THEOREM 6.11: Let G be a connected semisimple non-compact Lie group with 

finite center acting smoothly and almost effectively on a dosed manifold M of 
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d/mension n(G) + 1. Let M / G  be the orbit space of the action with the quotient 

topology. Then M / G  is obtained from S 1 or I by identifying (possibly infmitely 

many) open intervals to points. 

As applications of this theorem we determine all closed manifolds in dimension 

two which admit an effective action of a noneompact simple Lie group, and all 

dosed manifolds of dimension three which admit an effective action of a noncom- 

pact simple Lie group not Ioeally isomorphic to SL(2, R). 

To prove Theorem 6.9, it suffices (if the action is not transitive) to produce 

a single K-orbit of codimension one. Our approach to this is to identify the 

minimal sets of the G-action and then to relate the action of K to these minimal 

sets. A key step in this program is 

COROLLARY 1.12: Let G be a tea/algebraic group, and suppose G acts smoothly 

and almost effectively on a compact manifold M. Let z E M be a point contained 

in a minimal set of the action. Let Gz be the stabilizer of z, and G ° its identity 

component. Then NG(G °) is a cocompact real algebraic subgroup of G. 

We deduce from this 

THEOREM 6.6: Let G be a noncompact simple Lie group with finite center. Then 

n(G) is the minimum codimension of a maximal parabolic subgroup of G. If  G 

acts elfectively on a compact mani¢old M of dimension n( G) then M is a fmite 

equivariant cover of G/ S for some maximal parabolic S C G. 

In section 4, we compute, for each simple Lie group G, the minimum eodi- 

mension of a maximal parabolic subgroup of G. Although this computation is of 

independent interest, it is also a necessary ingredient in the proof of Theorem 6.9. 

Note that Theorem 6.6 has an extension to semisimple Lie groups; the precise 

statement is given below. 

This paper was motivated in part by (and employs some of the techniques used 

in the proof of) the following result of Zimmer: 

THEOREM [21]: Let G be a semisimple Lie group with finite center and suppose 

that G acts smoothly on a compact manifold M preserving an H-structure on 

M, where H is a real algebraic group. Then R - rank(G) _< R - rank(H). 

In the special case of H = GL(n,R) ,  n = dim(M), the theorem just says 

that dim(M) > R-rank(G). Although this special ease hardly does justice to the 

theorem, it is interesting to note that in the special ease the theorem is far from 
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being optimal. For example, G = SU(2, 2) has real rank 2 but  does not act on 

a compact manifold of dimension less than 4. For G = SO(p,p + 1), the real 

rank of G is p, but G does not act in dimension less than 2p - 1. On the other 

hand, for G = SL(n, R), R-rank(G) = n - 1 and G acts effectively on a compact 

n - 1 dimensional manifold. These examples show that something other than the 

R-rank of G controls the minimal dimension of an action, and indeed the results 

of this paper indicate that low dimensional actions of noncompact simple groups 

are in some sense controlled not by the R-rank, but  by the maximal compact 

subgroup. This in turn suggests a new approach to the general case of the theorem 

of Zimmer, in which the action is supposed to preserve a geometric structure (with 

algebraic structure group). We postpone this more general consideration to a 

subsequent paper. Note, however, that from our results it follows that for lowest- 

dimensional actions the isotropy groups are not unimodular, and this suggests 

that  in low dimensions an invariant geometric structure cannot be unimodular. 

This fact was already observed by Zimmer. 

THEOREM [20] : Let G be a connected semisimple Lie group with finite center and 

no compact factors, and suppose that G acts on a compact manifold of dimension 

n preserving an H-structure, where H is an algebraic subgroup of SL(n, R). Then 

there is an embedd/ng of Lie a/gebras 0 --' $, and the representation 0 ~ g --' ~[ 

contains ad~ as a direct summand. 

In the special case of H = SL(n, R), the theorem says that n _> dim(H). 

Indeed, a key step in the proof of the theorem shows that  the stabilizer of al- 

most every point is discrete, and therefore there are orbits of dimension equal to 

dim(H).  

Finally, we note that specific cases of low dimensional actions of noncom- 

pact simple groups have been treated by several authors. For example, in [14], 

Schneider classified real analytic actions of SL(2, R) on surfaces. In [2] and [3], 

Asoh classified smooth actions of SL(2, C) on S 3 up to equivariant homeomor- 

phism. In [lS],[iT], and [181, Ochida classified real analytic actions of SL(n, R) 

on S m, 5 < n < m < 2n - 2, and real analytic actions of SL(n, C) on S m, for 

14 < n  < m  <_4n-2.  

This paper is organized as follows: In section one we describe a mapping from 

a G-manifold to the Lie algebra of G which we call the Gauss map. This allows 

us to characterize stabilizers of points in minimal sets. Sections two through 
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four are devoted to a discussion of parabolic subgroups. In particular, we com- 

pute, for each simple real Lie algebra, the minimum codimension of a parabolic 

subgroup. In section five we establish some elementary facts about low dimen- 

sional real representations of simple groups. Section six contains the proofs of 

the main theorems. In section seven we collect some corollaries, remarks, and 

examples pertaining to the main theorems. In section eight we have tabulated 

some information from sections four and five. 

ACKNOWLEDGEMENT: I would like to thank the members and staff of the IHES 

for their generous hospitality during the preparation of this paper, and especially 

Mlle. C. Gourgues for her assistance in typing the manuscript. 

1. T h e  G a u s s  m a p  o f  a n  ac t ion  

Let G be a connected Lie group acting on a topological space M. For k E 

{1, ..., dim(G)}, let Grk(g) be the Grassmann manifold of k-planes in g. If V is 

a k-dimensional subspare of g we denote by [V] the corresponding element of 
I idirn(g) Grk(g). Let Gr(g) = vk=l  Grk(g), topologized as a disjoint union. If H is 

a subgroup of G we denote by H ° the identity component of H. For x E M, 

we denote by Gz the stabilizer of x in G. Define a map ~ : M ~ Gr(g) by 

$(m) = [/~(Gx)], where/~(.) denotes "Lie algebra of". 

Definition 1.1: The map ¢ : M --* Gr(g) is called the G a u s s  m a p  of the G 

action on M. | 

Note that ¢ is a G equivariant map, where G acts on Gr(g) via the adjoint 

action of G on ft. The map ¢ is not in general continuous. The object of this 

section is to find appropriate subsets of M on which ¢ is continuous, and then to 

use ¢ to relate the structure of these sets as G-spaces to corresponding subsets 

of Gr(g). The results of this section are closely related to those of [21]. 

Definition 1.2: A closed, G-invariant subset L C M is a m i n i m a l  set  if L 

contains no proper, closed, invariant subset. | 

If M is compact then minimal sets exist; in fact, the closure of every orbit 

contains a minimal set. 

Definition 1.3: A subset X C M is loca l ly  c losed if it is open in its closure. 

The action of G on M is said to be t a m e  if every orbit is locally dosed. | 
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LEMMA 1.4: Suppose G acts tamely on M. Then every n~nimal set of  the action 

is a compact orbit. 

Proo['. Let Mo be a minimal set. If M0 contains a noneompaet orbit G .  z, then 

G .  z - G -  z is closed and nonempty, which contradicts the minimality of M0. 

| 

LEMMA 1.5: Suppose G acts on two compact Hausdorff topological spaces M1 

and M2, and i : M1 ~ Mz is a continuous G-map. I f  C is a minimal set of MI, 

then if(C) is a minimal set of M2. 

Proo£" if(C) is a dosed invariant set in M2. Let C'  be a minimal set in ~(C). 

Then i -1 (C')NC is a closed invariant subset of C, so by minimality, i - a ( C  ') D C. 

Thus i ( C )  = C'. | 

COROLLARY 1.6: Let i : Ml ~ M2 be a continuous G-map and suppose G acts 

tamely on M2. / f  C is a minima/set  of M1, then ~(C) is a compact G-orbit. 

Henceforth we assume that M is a smooth compact manifold and that G acts 

smoothly on M. Define a function ~b : M ~ N by if(m) = dim(Gin). It is weU- 

known that  ~b is an upper semi-continuous function, i.e., that  ~b -~ ( { 0 , 1 , . . . ,  d}) 

is open for each d E N. 

LEMMA 1.7: Let i : M --* Gr(g) be the Gaussmap. Then Ikb-~(d) is continuous 

for all d E N. 

Proo~ Fix a positive definite quadratic form on g. For X E g, let X* be the 

vector field on M generated by X. Let x 6 ~b -1 (d), and {xi} C 0-1  (d) a sequence 

converging to z. Suppose {i(xi)} does not converge to i ( x )  in Grd(g). Then we 

may choose a subsequence {xi~ } and unit vectors Xk E £(G=~ ) such that  Xk 

X* converges to X in g, and X ~ £(Hz).  But then ( k)z~, = 0, so Xz* = 0, which 

is a contradiction. 1 

LEMMA 1.8: I£C is a mL,2Lmal set o[ the G-action then every orbit in C has the 

same dimension. 

Proof: Let k be the minimum dimension of an orbit in C. Then 

(M - 9 -1 (dim(G) - k)) N C 

is a closed invariant subset of C, hence equal to C by minimality. | 
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The following theorem gives crucial information about the G-action on Gr(lt) 

when G is a real algebraic group. 

THEOREM 1.9 [4]: Let k be a local ~eld of characteristic 0 and G an algebraic 

group defined over k. Suppose G acts k-algebraically on a k.variety V. Then the 

action of Gk on Vk is tame (in the Hausdorff topology on Vk). 

Detinition 1.10: A real  a lgebraic  g roup  is a subgroup of finite index in the 

set of real points of a (complex) linear algebraic group defined over R. II 

COROLLARY 1.11: Let G be a real algebra/c group. Then G acts tamely on 

Gr(g). 

Proof." The Grassmannian Gr(g) is the set of real points of the complex Grass- 

mann manifold Gr(gC). G c acts R-algebraically on Gr(gC), and the coronary 

follows from the theorem of Borel-Serre. | 

COROLLARY 1.12: Let G be a real algebraic group. Suppose G acts smoothly 

on a smooth closed manifold M. If  z 6 M is contained in a minimal set for the 

G-action, then N o ( £ ( G , ) )  is a cocompact subgroup of G. (NG(£(G~)) denotes 

the normalizer in G of £(  G~).) 

Proof: Let C be the minimal set containing z. Then by Lemmas 1.7 and 1.8, 

¢lC is continuous. By Corollaries 1.6 and 1.11, ~(C) is a compact orbit in Gr(g). 

The orbit of if(z) is 

O .  [£(G,)] = Ad(G). £(G,) = Ad(G)/H 

where H is the stabilizer of £(G, )  in Ad(G). H is cocompact in Ad(G), so 

A d - I ( H )  is cocompact in G. Clearly, A d - ' ( H )  = NG(£(G,)) .  | 

Note that  since Na(£ (G , ) )  is a real algebraic group it has finitely many con- 

nected components, so in fact N~(£(G, ) )  is cocompact in G. 

COROLLARY 1.13: Let G be a semisimple real Lie group. Suppose G acts 

smoothly on a smooth dosed manifold M. If  x E M is contained in a mini- 

real set for the G-action, then NG(£(G,))  is a cocompact subgroup of G. 

Proof." As in the proof of the preceding corollary, it suffices to see that the action 

of G on Gr(g) is tame. This follows since Ad(G) is a real algebraic group and 

the action of Ad(G) on Gr(g) has (up to finite cover of order at most I Out(G)l) 

the same orbits as the action of G. | 
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COROLLARY 1.14: Let G be a simply-connected, solvable real algebra/c group, 

and suppose G acts smoothly on a compact manifold M.  Then the identity 

component of  the stabilizer of any point in a minimal set is normal /n  G. 

Proof." Let H = NG(f (Gz) ) ,  where x 6 M lies in a minimal set. Then G / H  ° is 

a compact simply connected manifold. But G and H ° are both contractible, so 

G / H  ° is contractible and therefore equal to a single point, l 

 x ple 115: The group G = { ( :  . ' - , ) I  o b R} acts natur y on 
the space R P  1 of fines in R 2. There are two orbits for this action, a fixed point 

% 

corresponding to the line through (1, 0), and the complement of this fixed point. 

The stabilizer of a point in the complement is a one-dimensional non-normal 

subgroup of G. This action is equivalent to the adjoint action of G on Gr, (g). 

This example shows that for a general real algebraic group, an action in minimum 

dimension need not be transitive. I 

LEMMA 1.16: Let G be a Lie group acting on a compact manifold M.  I f  the 

action is not transitive then any orbit contained in a minimal set has codirnension 

at least one. 

Proof." If an orbit G .  x has codimension 0 then it is open in M. If the action is 

not transitive, then G .  z - G .  x is a nonempty closed invariant set. Thus G .  x 

is not contained in a minimal set. | 

2. C o c o m p a c t  a lgebra ic  s u b g r o u p s  

In this section we recall some standard properties of parabolic subgroups of 

semisimple Lie groups and establish the notation we will use in the sequel. We 

then use a theorem of Witte to characterize cocompact algebraic subgroups of 

semisimple Lie groups. 

Let G be a connected semisimple real Lie group with finite center. Let g = [ ~ p  

be a Caftan decomposition of g. Let a be a maximal abelian subalgebra of p. 

Then a is ad-semisimple, i.e., the adjoint action of a on g can be diagonalized. 

Thus we can write 

g = g o @ E g x ,  
AE~ 

where for any linear functional ), : a ~ R, 

gx = { X  e g l [H,X]  = A(H)X, VH e a}, 
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and ~ = {A E a'\{0}lgx # 0}. The subalgebra go is the centralizer of a in g and 

contains a Cartan subalgebra of g. The set ~ = ~(g, a) is the set of r e s t r i c t ed  

roo t s  of (g, a). An dement  H E a is r egu la r  if A(H) # 0 for all ~ 6 ~. A 

regular dement  H E a defines a subset 

r,+ = {A E ~I,,X(H) > O} 

of posi t ive  roo t s  in ~. If ~+ is a set of positive roots then the set 

{H 6 alA(H) > 0, VA e E+} 

is a W e y l  c h a m b e r  of (g, a). Let K be the connected subgroup of G with Lie 

algebra [. The W e y l  g r o u p  W(g, a) = NK(a)/ZIr(O) acts simply transitively 

on the Weyl chambers of (0, a). Fix a regular dement  H0 E a and let E+ be the 

associated set of positive roots. Let 

II={A6~+[A#~+/gfor~,/96~+}. 

II is called a simple sys tem of  roots .  An element H 6 a is non-negative if it 

is in the closure of the Weyl chamber associated to ~+, i.e., if A(H) _> 0 for all 

A 6 5?,+. For H 6 a, let 

s(H) = {X e g l (adH - A)kX = 0,for some A >__ 0, k 6 N}, 

let S(H) = No(,(H)). 

DefJnRion 2.1: A subgroup of G conjugate to a group of the form S(H) is called 

a parabolic subgroup of G. A Lie subalgebra of 0 conjugate to a subalgebra of 

the form s(H) is called a parabolic subalgebra of g. I 

Since the Weyl group acts transitively on the Weyl chambers we may always 

take H to be non-negative. There are natural decompositions 

S(H) = Zo(H) KS+(H) 

s(H) = Z.(H) 

where 

s+(H)  = {X e gl(adX - A)~H = 0,for some A > 0, k E N} 
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and S+(H) is the connected subgroup of G with Lie algebra s+(H). Let ~H be 

the roots in ~ which vanish on H. We have 

5+(H)= g,,. 

AEr,+\r,. 

Let a(H) = ker(A), and let a(H) ± be the orthogonal complement of 

a(H) in a with respect to the Killing form on g. Let re(H) be the orthogonal 

complement of a(H) in Zg(H). There are further decompositions 

Zo(H ) = re(H) (9 a(H) 

re(H) = , (HI  ± Z,( , )  
AEEH 

The subalgebras re(H) and a(H) commute. Note that for A 6 ~H, [gA,g-A] C 

n(H) ± (~ Ze(a). Set u(H) = s+(H). The decomposition s(H) = (re(H) 

a(H)) ~n(H) is called a Langlands decomposi t ion  of s(H). Note that this 

decomposition is canonical given the choices a, ~.+, and H. There is an associ- 

ated decomposition 

S(H) = (M(H).  A(H)) t~N(H), 

where M°(H), A(H), and N(H) are the connected subgroups of G with Lie 

algebras m(H),a(H), and n(H) respectively, and M(H) = ZK(H)M °. For H 6 a 

non-negative define IIH = ~H NIL The following well-known lemma is now more 

or less obvious. 

LEMMA 2.2: There is a one-to-one correspondence between conjugacy classes of 

parabo//c subgroups and subsets A C II. The correspondence is given by 

S(H) , , IIH, 

where H is a non-negative element of eL. T.f A C II we write S(A) = S( H), for any 

H 6 a such that A = IIH. (We may take any H 6 N~e~ kerA\ O#er+\~ ker~.) 

Then S(A) C S(A') h e and only if A C A'. 
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COROLLARY 2.3: The conjugacy c/asses of  max/raM (proper) parabolics of  G are 

ha one-to-one correspondence with elements of II, the correspondence being 

) , ,  , s ( n \ { ~ } ) .  

Example  2.4: G = SU(2, 2). We describe this example in some detail as it 

sheds light on the results to follow. We consider G as the group of unJmodular 

automorphisms of the hermitian form 

z1~4 + z2~s + zs~2 + z4~1. 

With respect to the basis zl,  z2, zs, z4, the matr ix  of this Hermit ian form is 

Q = 
1 0 
0 0 

The group G is the set {g • SL(4, C)[g*Qg = Q}, and its Lie algebra is 

g = {X e ~[(4,C)[X*Q + QX = o}. 

L e t s =  . If we w r i t e X • g i n t h e f o r m X =  D ' 

9[(2, C), then 

( A B ) ,D = _sA.s ,  B = _ s B .  s, C = _sC .  s, Re(tr(A)) = O} ~={C 
The transformation A --* sA% is reflection in the antidiagonal. The automor-  

phism 0(X) = - X *  is a Caf tan  involution of g with associated Caf tan  decom- 

position 9 = ~ ~ p, where 

(A B) 
e = {  - B *  sAs I A * = - A ' B = - s B * s ' t r ( A ) = O }  

P = { - s A s  I A * = A , B = - s B * s }  

The  maximal  abelian subalgebra a of p is 

0 o) 
a = {  y o I x , v • R }  

0 - y  
0 0 
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Define linear functionals a and/~ on tt by 

0 V  0 y 0 0 
= x - lt =2!/. (~ o o - y  o - y  o 

O0 0 0 0 --z 

Then ~(g, a) = {+a, 4-/~, i ( a  +/~), +(2a +/~)}. The set II = {a,/~} is a simple 

system of roots. The root spaces S:l:a and S±(a+p) are two dimensional, and the 

spaces g±P, S±(2a+p) are one dimensional. The positive root spaces are 

s o = {  ooo o [w~C} 
0 0  
o o  ( ooo / 

o=o I z ~ R }  
g P = {  ooo 

0 0 0 0  

s ~ + p =  Ooo o°-* l u e C }  
o o  o (ooo  / 

S~a+p={ ooo I z ~ R }  
o o o  
o o o o  

According to lemma 2.2, there are four conjugacy classes of parabolic sub- 

groups of G corresponding to the four sets l-I, {a}, {/~}, 0. ,The parabolic S(0) is a 

minimal parabolic and consists of upper triangular matrices in g. The parabolic 

corresponding to II is G. The other two parabolics are proper and maximal. We 

will describe them. Let (000 ) 
H a =  o lo  and H p =  ol o 

1 00 1 " 

0 0 0 1 0 0 0  0 

Then [ga, S - . ]  = C.  ~ a  and [gP, g-P] = R.  ~p.  

S(c~) = S ( H a  + 2 H p ) :  The components of the Langlands decomposition axe 

re(a) = sa • s - a  • c .  Ha ~ st(2, c )  

a(~) = R. (~a + 2Hp) 

n(a) = sp • s,~+p • s2,~+p. 

Thus dimS(a) = dimm(a) + dima(a) + dimn(a) = 6 + 1 + 4 = II. Note that 

S(a) is the stabilizer of the flag {zl,z2} C C 4. 

S(~) = S(Ha + Hp): The components of the Langlands decomposition are 

m(fl) = sp • s -p * a. Hp • iR.  Ha 

a(/~) = R.  (Ha + Hp) 

n(/3) = go • g-a • g2~+p. 
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Thus dim S(~) = 4 + 1 + 5 = 10. This group is the stabilizer of the flag 

{zl} C {zl ,z~,z3} C C 4. It is also the stabilizer in G of the m i n i m a l  flag 

{zl} C C 4, since the orthogonal complement with respect to Q of zl is the 

span of {zl, z2, z3 } and any element which fixes the line through zl also fixes its 

orthogonal complement. 

It follows that the minimum codimension of a parabolic subgroup of G is 

dim G - dim S(a)  = 4. Note that R-rank(G) = 2, and that the split real form of 

G is SL(4, R), which has real rank 3 and acts on a compact manifold of dimension 

3. The maximal compact subgroup of G is K = S(U(2) x U(2)), which has 

dimension 7, and which may act effectively only in dimension > 4. 

Let G be a connected noncompact semisimple real Lie group with finite center. 

There is a natural topology on G associated to the Zariski topology on the real 

algebraic group Ad(G). We call this the Zariski topology on G. In order to 

apply Corollary 1.13 we need to know what cocompact Zariski closed subgroups of 

semisimple groups look like. We recall first of all a result of Witte. For a parabolic 

S = M A N  we write M ° = L-  E,  where L is the product of all the noncompact 

simple factors of M ° and E is the maximal compact normal subgroup of M °. The 

decomposition S O = L E A N  is called the r e f ined  L a n g l a n d s  decomposition 
of S o . 

THEOREM 2.5 [19]: Let G be a connected, semisimple Lie group with finite 

center. Let H be a closed cocompact subgroup of G. Then there is a parabolic 

S in G with refined Langlands decomposition S O = L E A N ,  a connected normal 

subgroup X of L, and a connected, closed subgroup Y of E such that (a) H is 

contained in S, and (b) H ° = X Y N .  

An immediate consequence is 

COROLLARY 2.6: Let G be a connected, semisimple Lie group with finite center, 

and H a cocompact Zariski closed subgroup of G. Then there is a parabolic 

subgroup S O = L E A N  of G and a closed, connected subgroup Y of E such that 

H ° = L Y A N .  

Proof." Choose S as in Witte's theorem. Then H is a cocompact subgroup of S. 

But H has finitely many components, so H ° -- X Y N  is a cocompact subgroup 

of S °. Clearly, we must have X = L. | 
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Definition 2.7: Let G be a connected semisimple Lie group with finite center. 

Define fi(G) to be the minimum codimension of a cocompact subgroup of 17 which 

does not contain any nontriviai proper connected normal subgroup of 17. 

COROLLARY 2.8: Let 17 be a connected noncompact simple Lie group with finite 

center. Then h(17) is the minimum codimension of a proper parabolic subgroup 

of G. 

COROLLARY 2.9: Let G be a noncompact simple Lie group with finite center, 

and suppose 17 acts almost effectively on a compact manifold M. Let z E M be 

a point contained in a minimal set of the action. Let Gz be the stabilizer of z, 

and G o its identity component. Then there is a parabolic subgroup S of 17 with 

refined Langlands decomposition S o = L E A N  and a dosed connected subgroup 

r of E such that No(G°~) = L Y A N .  In particular, No(G °) is a cocompact 

subgroup of a parabolic in 17. 

Proof." Let z be a point in a minimal set of the action. Then by corollary 1.12, 

No(G °) is a cocompact algebraic subgroup of G, and therefore has the desired 

form by corollary 2.6. | 

Note that a parabolic subgroup of a semisimple Lie group contains all compact 

simple factors of the group. For this reason, corollary 2.8 is false for semisimple 

groups with compact factors. The following proposition describes the situation 

for a general semisimple group. 

PROPOSITION 2.10: Let 17 be a connected semisimple Lie group with finite cen- 

ter. Write G = (rI~=l Gi).H, where G1, . . . , Gk are connected simple noncompact 

normal subgroups of 17 and H is the maximal normal compact subgroup of 17. 

Let Q be a connected, cocompact subgroup of G which does not contain any 

simple factor of 17. Suppose that Q is mammal with respect to this property. 
k 

Then there is a mammal parabolic subgroup S C ~Ii=l Hi with refined Lang- 

lands decompositions S O = L E A N ,  and a dosed subgroup Y of E H  mammal 

with respect to the property that it contain no-connected normal subgroup of H, 
k such that Q = L Y A N .  If H = {c} then Q = l'~i=l So, where Si is a mammal 

parabolic subgroup of Gi. 

Proof: By the corollary to Witte's theorem there is a parabolic S in G with 

refined Langland's decomposition S o = LEMAN and a closed connected subgroup 

Y C E ~ such that Q = L Y A N .  Any parabolic subgroup of G is a product 
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of parabolic subgroups in the simple factors, so there are parabolic subgroups 

Si C Gi, i = 1, . . . ,  k, with refined Langland's decompositions S o = LiEiAiNi, 

such that S = (riik=l s i ) .  H. Moreover, 

k k 

L = ( H L , )  E ' = ( H E i ) ' H  
i=1 i=1 

k k 

A = ( H A i )  N = ( H N i ) .  
i=1 i=1 

Set E = H Ei. Suppose Y~ is a closed subgroup of E H  which contains Y and 

does not contain any simple factor of H. Then Q~ = L Y t A N  contains Q and 

does not contain any simple factor of G, so by maximality Q = Q~ and therefore 
y = y i .  | 

Example 2.11: Let G = SO(n, 1) and let S be the (unique up to conjugacy) 

proper parabolic subgroup of G. The refined Langlands decomposition of S O is 

given by L = {e}, E ~ S O ( n - l ) ,  A = R~_, and N ~ R n-1. Let 7r : S ° 

SO(n - 1) be the map which is trivial on A N  and the identity on E = SO(n - 1). 

Then Id xTr embeds P in G x SO(n - 1). The image is cocompact and maximal 

with respect to the property that it contain no normal subgroup. | 

k COROLLARY 2.12: Let G = l-li=l Gi be a connected semisimple Lie group with 

finite center and no compact factors. Then h( G) k = ~"~i=x h(Gi), and h(G) is the 

minimum codimension of a parabolic subgroup of G which does not contain any 

simple factor of G. 

3. Complex parabolies 

In this section we recull the definition of a complex parabolic subalgebra of 

a complex semisimple Lie algebra and spell out the relationship between real 

parabolics and complex parabolics. Most of this material is well-known and we 

have omitted most of the proofs. 

Let G be a connected complex simple Lie group, g its Lie algebra. Let I} be 

a Cartan subalgebra of g, and g = [} (9 ~,~¢~ g~, be the decomposition of g into 

root spaces for IJ. Let B be the Killing form on g and for each ~ E E let Ha be 

the unique element of l} such that B(H, Ha) = a(H) for all H E g. Let I}rt be 

the real subspace of 1} spanned by {Hn}~¢g. Then B is real and positive definite 
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on DR, and in particulax each a E E is real and non-trivial on In, and E is an 

abstract root system on DR. We fix a positive system of roots E+. 

A maximal solvable subalgebra of g is called a Borel subalgebra, and any 

Borel subalgebra is conjugate by an element of G to the subalgebra b = I~ 

~acr.+ g~. A complex subalgebra $ C 0 is parabolic if it contains a Borel 

subalgebra of g. Again, by conjugating , we need only consider subalgebras 

which contain b. A connected subgroup of G is called parabolic if it is the 

normalizer of a parabolic subalgebra of g. 

LEMMA 3.1: Let g be a complex simple Lie algebra. Then the set of complex 

parabolic subalgebras coincides with the set of real parabolic subalgebras of g 

considered as a real Lie algebra. 

Let g be a real Lie algebra. We denote by gC the complexification g ®R C. 

Suppose now that  g is simple and noncompact. Let g = E @ p be a Cartan 

decomposition and a a maximal abelian subalgebra of p. Let b be a maximal 

abelian subalgebra of Ze(a). Then b @ a is a Caftan subalgebra of ~]c with 

corresponding real form I]R = ib fl) a. Let ~ be the root system of (gO, I~) and 

~(g, a) the restricted root system of g. Since a is a subspace of DR, we may choose 

orderings on the dual spaces D~ and d such that for A • D~, if A[a is non-zero, 

then A is positive if and only if A[a is positive. Fix such orderings and let E+ and 

~+(g, a) be the positive roots in ~ and ~(g, a), respectively. Let rl and rl(g, a) 

be the associated simple roots. For a • ~2, write ~ for the restriction of a to a. 

Let 
r . l , =  • 

• 

h i ,  = • n } \ { o } .  

LEMMA 3.2 [13]: With the conventions above, 

(1) E l .  = 

(2) r +l. = 

(3) nl. = nCg,.) 

LEMMA 3.3: Let g be a real semisimple (noncompact) Lie algebra. Let s be 

a parabolic subalgebra of If. Then 5 c is a complex parabolic subalgebra of gc. 

Conversely, if  s is a real subalgebra of g such that 5 c is a parabolic subalgebra 

in gO, then $ is a parabolic in g. 
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Proo£" We may assume that s = s(H0), where H0 • n and Ho is non-negative 

with respect to E+[a. We will show that s(H0) c contains the Borel subalgebra 

b = b ~ ~"]~aeE+ go. Note first that for any H • b, I) C Z0c(H). Since s(H0) 

Zo(H ) and Zgc(H) = (Ze(H)) c it follows that b C s(H0). Now let ot • E +. 

I f a [ a  = 0 t h e n g ~  C Zgc(n) C Z0c(H0). I f a [ a  ~ 0 then a[a • E+(g,a) so 

g~l, C s(H0). But gc C (g~l,) c and the claim follows. 

To prove the converse we introduce some temporary notation. Let go be a 

real semisimple noncompact Lie algebra and g its complexification. Let T be 

complex conjugation in g with respect to the real form g0, i.e., if X, Y • g0, then 

T(X + iY)  = X - iY.  Let g0 = e • P be a Cartan decomposition, a a maximal 

abelian subalgebra of p, and b a maximal abelian subalgebra of Zt(a). Then b $ a 

is a Caftan subalgebra of g0 and Ij = a c ~ b c is a Cartan subalgebra of g with 

real form bR = a~ib .  Let s0 be a real subalgebra of go and ~ its eomplexification. 

Then r(~) = $. Suppose now that s is a parabolic subalgebra of g. 

It follows from lemma 3.1 that 5 is a real parabolic subalgebra of g, i.e., there 

is some H • bat such that (up to inner automorphism) ~ = s(H).  We may write 

H = 1tl + ill2 for H~ • a and / / 2  • b. Let 

/x = • b )l > 0} 

A , =  • > 0}" 

Then s (H)  = Z~(H) ~ Y ~ e A  g~. We are going to show that A = A'. From this 

it follows that  s (H)  = s(H1), and therefore that ~ = ~(H1) N g0 = s0(H1 ), where 

s0(H1 ) denotes the parabolic subalgebra of go defined by H1. 

To prove that  A = A I we argue by contradiction. Suppose 2~ E AVV. Then 

A(H) > 0 but A(H1) = 0. It follows that 

T()~)(H) = )~(T(H)) = ~(H1 - ill2) = -)~(H) < O. 

Thus r ( )  0 ~ ~+. But T(~(H)) = 5(H), so T(A) = A. This yields a contradiction, 

so A \ A '  = ~. If A e A ' \A ,  then A(H1) > 0 and A(iH2) = -A(H1).  Then 

T(A)(H) = A(H1 - ill2) > 0, and again we have a contradiction. Thus A = A'. 
| 

De~i t ion  3.4: A simple real Lie algebra g is said to be split over R if a is a 

Caftan subalgebra of g, i.e., if Z~(B) = a. | 
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LEMMA 3.5: Let g be a simple noncompact real Lie a/gebra, and 9 c iLs  eom- 

plexitieation. The map n -~ s c gives an injective map from the set of eonjugaey 

classes of parabolic subalgebras o[ g to the set of conjugacy classes of parabolic 

subgroups of gc. This map is surjective i f  and only if g is split over R. 

Proof'. According to the preceding lemma, the map ~b is well-defined. For the 

proof of the theorem we maintain the notation of the preceding lemma. 

Let b be a maximal abelian subalgebra of Zt(a). Then [ = (b6) a) c is a Cartan 

subalgebra of gc with corresponding real form DR = ib 6) a. If a(H) is a parabolic 

subalgebra of g, H non-negative, then s(H) c is a parabolic of gc. Moreover, 

since s(H) = Z,(H) @ ~ x e ~ + \ ~ ,  gx, it follows that 

 (H)C = (Z,(H))C 6) (g )c 

= 6) 

A6E+\~. 

In particular, if s(H) c = s(H')  c, then Z,c(H) = Z~c(H'), so s(H) = , (H ' ) ,  and 

4 is injective. 

Now if g has real rank n, then there are 2 n subsets of II(g, a), and there- 

fore 2" distinct conjugacy classes of parabolic subalgebras of g. Let m = R-  

rank((sc)~) = C-rank(gO). Then m > n and equality holds if and only if g is 

split over R. Since a complex parabolic is the same as a real parabolic of (go)R, 

there are 2 m conjugacy classes of parabolics in g c  Thus ~b is surjective if and 

only if g is split over R. | 

Example 3.6: This is a continuation of example 2.12. Recall that ~ = su(2,2), 

II(g, a) = {a,/9}. Let gc = st(4, C) be the C-linear span of g in g[(4, C). The set 

of tra~e zero matrices in gc is a Cartan subalgebra with real part ( 000) 
~ o o ix, y,  z E R , z  + ~ + z + w = O}. 
ozo 

O00w 

Define linear functionals 7, 6, and ~/on DR by 

,( oo I, (Oo) (oo) zO z 0 0 0  z 0 0 0  
oo 6( oyo = z - y  ) = y - z  ,1( N0 0 7 O z O  O O z  O z O  ) = z - - w .  

O O w /  0 O 0  u~ 0 O 0  w 

Then 7 = r /=  c~ and 6 =/9. The set II = {7,6,r1} is a simple system of roots for 
gc. | 
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4. Maximal  Parabolics 

Our next goal is to determine the maximal parabolics of maximal dimension in 

the real simple Lie algebras. We do this first for complex simple Lie algebras. We 

then study the real non-complex simple Lie algebras, and use Satake diagrams to 

relate parabolics in the real algebra to parabolics in the complexification. This 

allows us to do all our computations in the complex simple Lie algebras, where 

they are significantly easier. 

LEMMA 4.1: Let g be a real simple Lie algebra, g = t(gp a Caftan decomposition, 

a a maximal abe/Jan subalgebra of p, and A a subset of II(g, l)). Let 5(A) be 

the parabolic subalgebra associated to A and •(A) (B a(A) (9 n(A) the Langlands 

decomposition. Then codim(g : s ( a ) )  = dimn(~,) = ½ ( d i m o -  d i m m ( a ) -  

dima(A)). 

Proof." Let 8 be the Cartan involution of g associated to the Cartan decompo- 

sition g = t (9 p. Recall that re(A) (9 a(A) is 8-stable, and 0(A) = -A for A 6 E. 

For A 6 E\EH, gx C na if and only if A is positive. Thus 

g = O(na) • m~ • aa • na 

and the lemma follows immediately from this. II 

PROPOSITION 4.2: Let g be a complex simple Lie algebra, D a Caftan subalgebra, 

E the root system o[(g,O), E + a set of positive roots and II C E + the shnple 

roots. Let A be a subset of II and sA = s( A ) the associated parabolic subalgebra 

of g. Let s,~ = (ma (9 an)~< na be the Langlands decomposition. Then mA is 

semishnple, and with respect to an appropriate ordering the set of simple roots 

of (mzi,m,, N ~) is A. The Dynk/n diagram o/ran is obtained from the diagram 

of g by deleting all vertices not in A as well as all edges incident on such vertices. 

Proo£" Choose H E ~R such that l'In = A. Then ma (ga~ = Zg(H) = 

(9 ~]xeI;B gx- The subalgebra mz~ is the orthogonal complement in Zg(H) of 

aA. Thus mA is 8-invariant, where 8 is the Cartan involution of g determined by 

3, so mA is reductive. We may decompose m~ as 

mA = g~ @. . .@g~ @}, 

where ~ is the center of mA. Since mA commutes with aa and ~ C mn@ aA, it 

follows that ~ is ~-invariant, and therefore decomposes as a direct sum of root 
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spaces : 

AEr 

But for A ~ ~'H, --A is ~lso in EH, and [g~,g_~] ~ {0}. It foUows that ~ -- 0 

since the root spaces g~ are one-dimensionM. 

Order EH by the induced ordering from E. It is easy to see that the simple 

roots in ~+H are the elements of A. The last assertion of the proposition now 

follows because ~H is a root system contained in 52., and generated by A. | 

Note that  the proposition is not true for a real simple Lie algebra. Indeed, the 

restricted root spaces are not in general one-dimensional, and mA is not in general 

semisimple. It is also much more difficult to compute the dimension of mA in 

the real simple case. We will, however, use lemma 4.1 to determine the minimal 

codimension of a maximal parabolic in every real simple Lie group. First, we 

determine these codimensions for complex simple groups. For a E I I  we write 

PROPOSITION 4.3: The max/real parabolics of max/mal dimension in the com- 

plex simple Lie algebras are listed in table I, along with the complex cod/mension 

of these parabolics. 

Proof: We do a case by case analysis. 

at: If we delete the root ai  from 1I we are left with the root system ai-1 x at-i, 

and the associated Lie algebra has dimension (i z - 1) -6 (£ - i -6 1) 2 - 1. 

Thus codim(g : s~,) = i(£ - i -6 1). This expression is minimized when 

i = 1 o r £ .  

bt: 1) Deleting ai  for i < £ - 1 leaves ai-1 x bt-i ,  which has dimension 

(i 2 -1 ) -6 (£ - i ) (2 (g - i )+1 ) .  Thus codim(g : s~, -- ~(4£-3 i÷1) .  

This is minimized for i -- 1, in which case codim(g : $~,~) -- 

2£ - I. 

2) Deleting a t -1  leaves at-2 x al,  and codim(0 : s~t - , )  = ½(£2 -6 

3£ - 4) which is larger than 2£ - I for £ > 2. 

3) Deleting a t  leaves a t - l ,  and codim(9 : s~t) = I 2 (£ + £), which 

is larger than 2£ - 1 for £ > 2, and equal to it for £ -- 2. 

ct: The computation is exactly the same as for bt. 
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1) Delet ing Ot i for i < £ - 2 leaves ai-1 x ~ t - i ,  and 

codim(0 : 5,,,) = 2(4£ - 3i - 1). 

Th is  is min imized  by  i = 1, in which case codim(g : s a t )  = 2£ - 2. 

2) Delet ing ott-s  leaves a t - ,  x al x al and  codim(g : nc, t_~) = 
1 2 ~(£ - £ - 6). This  is larger  than  2£ - 2 for £ > 4 and  equal  

for £ = 4. 

3) Delet ing a t -1  or a t  leaves a t - l ,  and codim(o : 5m_ , )  = 

codim(g : s a , )  = ½(£2 _ £). This  is larger  than  2£ - 2 for 

£ > 4 .  

I )  Delet ing a l  or  a s  leaves I~5, and codim(g : sa~) = 14. 

2) Delet ing ~2 leaves 115. codim(g : s ~ )  = 21. 

3) Delet ing ol3 or as  leaves al x a4. codim(g : ~ )  = 25. 

4) Delet ing a4 leaves as x al x as, and codim(g : a~,,) = 29. 

codim(g : ~,,,) = 33 codim(g : 5~,)  = 50 

codim(g : s~,2) = 42 codim(g : s~8) = 42 

codim(g : 5~3) = 47 codim(g : s~r )  = 27 

codim(g : 5~,)  = 53 

cs: codim(g : s ~ , )  = 78 codim(g : s,~, )  = 83 

codim(0 : 5~8) = 104 codim(g : s~,,) = 106 

codim(g : z~2) = 92 codim(g : s , , . )  = 57 

codim(g : 5~,e) = 97 codim(g : s~,s) = 98 

h :  codim(g : ~,~) = 15 codim(g : ~ 2 )  = 20 

codim(g : s~3) = 20 codim(g : s,~4) = 15 

g4: codim(l~ : s ~ , )  = codim(g :~ ,~)  = 5. l 

We tu rn  next  to the de te rmina t ion  of the  max ima l  paxabolics of max ima l  

dimension in the  real forms of the complex simple Lie algebras.  T h e  s i tuat ion 

here  is quite a bi t  more  compl ica ted than  in the  complex  case because  the  Dynkin  

d i ag ram of a res t r ic ted root  sys tem does not  de termine  the associa ted real form. 

I t  is necessary also to list the  multiplicit ies of  the  roots.  O u r  app roach  to com- 

pu t ing  the max ima l  parabol ics  of a real form g is to use the "Satake  d iagram"  of 

g to relate  the max ima l  parabol ics  of  g to parabol ics  (not necessari ly max ima l )  

in go, and  then  to do the  necessary computa t ions  in go. 
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Definition 4.4: Let It be a real simple Lie algebra with Caftan decomposition 

g = t @ p. Let a be a maximal abelian subalgebra of p, and let b be a Caftan 

subalgebra of g containing a. With the conventions we have employed above, the 

S a t a k e  d i a g r a m  of (g, a) consists of 

(1) The Dynkin diagram of (gc, ijc). 

(2) A coloring of the vertices of the diagram: black if the associated restricted 

simple root restricts to 0 on a, white otherwise. 

(3) A "curved arrow" joining two white vertices if and only if the associated 

simple roots restrict to the same root on a. | 

Example 4.5: Let g be a complex simple Lie algebra, !~ a Cartan subalgebra, and 

a = hR. Then the Satake diagram of (g, a) consists of two copies of the Dynkin 

diagram of (g, b), with all vertices colored white, and curved arrows connecting 

corresponding pairs of vertices in the two copies of the Dynkin diagram. 

The Satake diagrams of the real forms of the classical complex groups were 

constructed by Satake [13], and for the exceptional groups by Araki [1]. A table 

of the Satake diagrams of the real non-complex simple Lie algebras and the 

multiplicities of the restricted roots is reproduced in Helgason [6, pp 532-534]. 

For ease of reference we have reproduced part of this table below (table 2). II 

Definition 4.6: Let g be a simple real Lie algebra. A simple root a E II(l~, a) = 

I I [  a is said to spl i t  if there are two simple roots a l , a~  q l"I(gc, ~ c) such that 

~1 = ~ 2  = tr. | 

LEMMA 4.7: Let g be a rea /  form of a complex simple Lie algebra, o q II(g, a), 

and s~, = s(H(II, a ) \{a})  the corresponding maximal parabolic of g. 

(1) / f a  does not split, then (s,,) c is a maximal parabolic ofg  c. 

( 2 )  s p l i t s ,  t h e n  ( s o )  c = 5 ,,o2 = w h e r e  = = 

(3) codimRCg : sa) = codimc(i~c : (s=)c). 

Proof." The proof is a straightforward application of results we established in §3 

and is left to the reader. | 

THEOREM 4.8: The parabolics of maximum dimension in the real non-complex 

simple groups are listed in table 2, along with the Satake diagrams and the 

codimension of the maximal parabolics of maximum dimension. 

Proof." Let tr E II be a root such that s~ C gc is a complex parabolic of 

maximal dimension. If ~ does not split then (~_)c = s~, and codim(g : s~-) = 
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codim(g c : sa).  By inspecting the list of Satake diagrams one sees that the 

theorem follows immediately from lemma 4.1 and proposition 4.3 for the cases 

s[(n + 1,R), $o(p,q),  sp(n,R),  ee(e), e6(-26), e7(7), e7(-25), es(s), es(-24), h(4), 
f4(-20), and g2(2). Similarly, if we consider the cases in which no restricted root 

splits we need only compute the codimensions of maximal complex parabolics in 

gc corresponding to roots in the Satake diagram which are colored white. These 

are the Lie algebras si(n + 1, H), sp(p, q), s0*(2n) (n even), and eT(-s). Referring 

to the computations in the proof of proposition 4.3 one verifies the theorem in 

these four cases. 

There are six cases remaining; we treat them one by one. 

= su(p, 1). There is only one parabolic, s;~L, and (5A1)c = s,~l,~p. The codi- 

mension of sa~,,~p in gc is ½(dim(g) - dim(ap_2) - 2) = 2p - 1. 

g = s0*(2n), n odd, n > 3. The only root of (g, a) which is split is A,-1,  and 

(5;~_~) c = sa ._ : . a . ,  which is contained in za n. Now dim(s~.)  < dim(s~2) , so 

s;~ 2 is the maximal parabolic of maximal dimension in I~. 

g = ¢6(2). (axl)C = Sa~,a, and 5al,a, has codimension ~ (d i m(9 ) -  d im(~4) -  2) = 

½(78 - 28 - 2) = 24. (*x3) c = *~8,,~5 C *,~s, which has codimension 9.5. But 

(*x2) c = s,,2 has codimension 21, so sx2 is of maximal dimension. 

g = ¢s04). As in the preceding case, (sx~)c has codimension 24 and (sx2) c = 5~2 

has codimension 21. 

g = su(p,q) p > q > 1. (sx,) c = sa,,~,+,_,. Deleting ai  and ap+q-i  from the 

root system of ap+g-i leaves ai-1 x ai-1 x ap+q-2i-1. Thus codim(g : $;~) = 

2i(p + q) - 3i 2. This is minimized for i = 1, and codim(g : 5x~ ) = 2(p + q) - 3. 

g = su(q, q). For i < q the same computation applies as in the preceding case. 

The root Aq is not split, and codim(g : sx,)  = codim(g c : ~ , , )  = qZ. But 

codim(g : sxt ) = 4q - 3, which is less than q(q + 1) for q > 2, so sxl is of maximal 

dimension for q > 2. For q = 2, 5~ 2 is maximal. 1 

5. Low dimensional representations 

For the proofs of the theorems in §6 it will be necessary to know something about 

the linear isotropy representation of G at a fixed point of the action. Specifically, 

we need to know the minimum dimension of a faithful real representation of a 

real simple Lie algebra. We consider this question in this section. 



50 G. STUCK Isr. J. Math. 

Let g be a complex simple Lie algebra and A an a l g e b r a i c a l l y  i n t e g r a l  

linear functional on D, i.e., A E [J', and ~ E Z for all ~ E ~. Let H = 

be the set of simple roots, and define Ai = ~ .  The linear ,O/k} 
functional A is said to be d o m i n a n t  if Ai >_ 0 for i = 1 , . . . ,  k. The following 

classical theorem asserts that the complex irreducible representations of g are 

in one-to-one correspondence with ordered k-tuples of non-negative integers A : 

THEOREM (Theorem of the highest weight): Let g be a complex simple Lie al- 

gebra. The irreducible complex representations of g are in one-to-one corre- 

spondence with the dominant, algebraically integral linear functionals on l~, the 

correspondence being that A is the highest weight of the representation p~ with 

respect to the ordering on l} ~. 

LEMMA 5.1: Let A and A' be dominant, algebraically integral linear functionals 

on I}, and suppose Ai >_ A~ for i = 1 , . . . ,  k. Then for all o~ E ~+, (A, a / _> (At, a/ .  

Proof." The difference A-A' is a dominant, algebraically integral linear functional 

on IJ. The lemma then follows from the fact that for a dominant, algebraically 

integral functional A, (A, a) _> 0 for all a E ~+. (cf. [8, 4.15]). | 

THEOREM (Weyl dimension formula): The dimension of px is 

' 

 ,here = ½ 

COROLLARY 5.2: Let A and A ~ be dominant, algebraically integral linear func- 

tionals on !}. /fAi >_ A~ for i = 1 , . . . ,  k, then dA >_ dx,, and equality holds i f  and 

only if A = A'. 

Proof'. By lemma 5.1, (A,a) >_ (A',a) for all a E ~+,  and since (/~,a~ > 0 for all 

a E E +, it follows that (A -t-/~,a) >_ (A' -b 6, a) > 0 for all a E ~+,  and ifA ~ A', 

then strict inequality holds for some a. Now it follows immediately from the 

Weyl dimension formula that dx >_ d~,, and equality holds if and only if A = A ~. 

| 

Definition 5.3: The i-th f u n d a m e n t a l  r e p r e s e n t a t i o n  pi of g is the complex 

representation with highest weight 7h, where ~ = 1 and (r/i, a i )  = 0 for 
i # j .  j 
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COROLLARY 5.4: Let Px be an irreducible complex representation of the complex 

simple Lie a/gebra g with highest weight A. If Px is not fundamental, then 

dx > min({max(d~,, d~i)}i~j U {d2t/,}i=l ..... k). 

Proof: If Px is not fundamental then there are either two indices i and j such 

t h a t  hi  > 0 and )~j > 0, or an index i such that )q > 2. By the preceding corollary, 

in the first case dx > d,~ and dx >_ d,j ,  and in the second case, dx > d2,j. | 

LEMMA 5.5: For the complex simple Lie algebras the rain/mum dimension of a 

reM representation is given in table I. 

Proof." The (complex) dimensions of the fundamental representations of the 

simple complex Lie algebras are listed, for example, in table 30 of [5]. None of 

the fundamental representations is real. By inspection of the table in [5] and 

corollary 5.4 one verifies the lemma. II 

LEMMA 5.6: For n > 2, s[(n,H) has no rea/representation in dimension less 

than 4n. 5[(2, H) has no real representation in dimension less than six. 

Proof'. ~[(n, H) is a real form of ~t(2n, C), and the maximal compact subalgebra 

ofs[(n, H) is sp(n). The fundamental representations of ~t(2n, C) have dimensions 

d,, = (2:_) ,i = 1 , . . . ,  2n - 1. It follows from the preceding corollary 
% 

that for 

any irreducible representation Px of s[(2n, C), either 

(1) A = r/1 or A - -  r l 2 n _ l ,  

(2) A = 171 "~- ~2n--l,  

(3) ~I _> 2 or A2.-I > 2, or 

(4) dx>- ( 2 z ) .  

In case (1), Pnl is equivalent to P~2.-I, and Px is the standard representation of 

s[(2n, C) on C 2n. In case (2), the representation px is the adjoint representation 

which has dimension 4n 2-1 .  In case (3), we have dx _> d2.~, and a straightforward 

computation shows that d2.~ = (n + 1)(2n + 1), which is greater than or equal 

to 4n for n > 2. In case (4) we have dx >_ 6 for n = 2, and dx > n ( 2 n -  1) > 4n 

for n > 2. 

Now let rr be an irreducible real representation of s[(n, H) on a real vector 

space V. Then 7r c is a complex representation ofs[(2n, C) on V c, and direR(V) = 

dime(VC). If z "c is reducible, then the representation (~r, V) is equivalent to a 

complex representation of 5[(n, H) considered as a real representation. In this 



52 G. STUCK Isr. J. Math. 

case dimR(V) _> 4n. If ~r c is irreducible, then either d ~  > 4n (for n > 2) 

or ~r c = P~t. The second possibility does not occur, since if lrc = p~ ,  then 

~rc I sp(n) is the standard representation of sp(n), and ~r(sp(n)) C sl(2n, R) 

implies that  sp(n) ~ sp(n, R), which is nonsense. II 

LEMMA 5.7: For p + q > 4, 5u(p, q) has no tea/representation in dimension less 

than 2(p+ q). For p +  q = 4, zu(p, q) has no real representation in dimension Jess 

than six. su(2,1) has no reM representation in dimension less than six. 

Proof: su(p, q) is a real form of st(n, C) for n = p + q. We consider first the ease 

p + q > 4. As in the preceding lemma we conclude that an irreducible complex 

representation of st(n, C) either has dimension greater than 2n, or is equivalent 

to the standard representation p of st(n, C) on C". The representation plsu(p, q) 

leaves invariant a Hermitian form on C" of signature (p, q), and if plsu(p, q) 

were real, then it would leave invariant a real quadratic form of signature (p, q). 

Thus we would have a homomorphism su(p, q) ~ so(p, q), which is impossible 

because dim(su(p, q)) > dim(s0(p, q)). It follows that for p+q > 4, the minimum 

dimension of a real representation is 2(p + q). 

For p + q = 4, we find that a complex representation of st(n, C) either has 

dimension at least 6 or is standard. Since the standard representation of su(p, q) 

is not real we conclude that  the minimal dimension of a real representation of 

$u(3,1) or su(2, 2) is 6. 
For the Lie algebra su(2,1), there are exactly two (equivalent) fundamental 

representations of s((3, C). If Px is a non-trivial, non-fundamental irreducible 

representation of st(3, C) then either 

(I) At >_ 2 or A2 >_ 2, or 

(2) AI >landA2>l. 

In the second case, dx is greater than the dimension of the adjoint representation, 

which is 8. To obtain a lower bound on dx in case (1), it suffices to compute the 

dimension of P2st- An easy computation shows that d2~t = 6. The assertion of 

the lemma now follows just as in the ease of p + q > 4. | 

LEMMA 5.8: The mhlimum dimension o[ a rea/representation o~'$o(p, q), (p+q > 

4), is p + q. 

Proof." so(p,q) is a real form of s0(n,C), where n = p + q. The fundamental 

representations of so(n, C) have dimensions ( i ) ,  for i = 1 , . . . , [ - ~ ] -  1, and 
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r f t - - l ]  
2 t T  . For n > 4, we conclude that every irreducible complex representation 

of so(n, C) has dimension at least n, and therefore every real representation of 

so(p, q) has real dimension at least n. The representation corresponding to i = 1 

is the standard representation, which is real and has dimension n. | 

LEMMA 5.9: For n > 4, z0*(2n) has no reM represenLation in dimension less 

than 4n. 80*(6) has no real representation in dimension less than 6 and $0"(8) 

has no real representation in dimension less than 8. 

Proof." The last two assertions follow from preceding lemmas and the isomor- 

phisms s0*(6) ~- 5u(3,1) and 80*(8) ~ 80(6,2). Suppose then that n > 4. As in 

the preceding lemma, the fundamental representations of zo(2n, C) have dimen- 

sions ( 2 : ) , i =  l , . . . , n - 2 ,  and 2"- ' .  For n > 4, ( 2 : )  > 4n for2 < i  < n - 2 ,  

and 2 . -1 > 4n. One computes also that d2rh = (2n - 1)(n + 1), which is greater 

than 4n for n > 4. Thus the only possible real representation of s0*(2n) of di- 

mension less than 4n is one which complexities to the standard representation of 

s0(2n, C). Recall that 

Thus so*(2n) leaves invariant (in the standard representation) a Hermitian 

form of signature (n, n), so if s0*(2n) is real then s0*(2n) C so(n, n). These 

groups have the same dimension, and are not isomorphic, so s0*(2n) ~ ,o(n, n), 

and the standard representation of s0*(2n) is not real. The lemma is proved. 
| 

LEMMA 5.10: For p + q > 2, ,p(p, q) has no tea/representation in dimension less 

than 4(p + q). 

Proof." sp(p, q) is a real form of sp(n, C), the fundamental representations of 

which have dimensions (2n)  - (i2_n 2) ,  for i = 1 , . . . , n  (we define ( ~ )  = 0 ) .  

- i-2 > 4n for i = 2 , . . . , n .  The representation P2~t has 

dimension d2~t = n(2n + 1) (in fact, P2~t is the adjoint representation), and 

d2~t > 4n for n > 1. Thus if p is a real representation of 5p(p, q) in dimension 

less than 4n, then its complexification must be the standard representation of 

,p(n, C). The standard representation of 5p(n, C) preserves a skew symmetric 

non-degenerate bilinear form on C 2", and if the restriction of this representation 

to sp(p, q) is real, then sp(p,q) preserves a skew-symmetric bilinear form on 
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R 2n, i.e., np(p, q) C sp(n, R). Since sp(p, q) and sp(n, R) are not isomorphic and 
have the same dimension, there can be no such inclusion. Therefore zp(y, q) for 

p + q > 2 has no real representation in dimension less than 4(p + q). | 

Note that the Lie algebra sp(1,1) is isomorphic to s0(4,1). 

De~'aition 5.11: Let G be a real Lie group. Define/I~(G) to be the minimum 

dimension of an almost faithful real representation of G. For a real Lie algebra fl 
let ~(g) be the minimum dimension of a faithful real representation of g. | 

Note that ~(G) >_ ~(1t). 

k 
LEMMA 5.12: Let $ = ~=lgi,.= where each gi is a simple real Lie algebra. Then 

k 
~ ( g )  ---~ Ei----1 ~(~li) .  

Proof: We argue by induction on k. For k = 1 there is nothing to show. Let 
k-1  

(p,V) be a faithful real representation of g, and let g' .= ,=~11~i..= Let W0 be a 

subspace of V on which P(gk) acts nontrivially and irreducibly, and let W be 

the smallest p(g)-invariant subspace of W containing W0. Let W ± be a p(g)- 

invariant complement to W. Let U = ~omg~(W, Wo). Then g' acts on U since 

g~ commutes with gt. Moreover, the representation of g' on U ~ W ± is faithful. 

By the induction hypothesis, dim(U ~ W ±) ~_ ~(g') = ~>'~i~-11 ~(gi). On the other 

hand, 
dim(V) = dim(W ±) + dim(W) 

= dim(W ±) + dim(W0), dim(U). 

If dim(U) = 1 then g' acts trivially on U, so dim(W ±) > ff(g') and dim(V) >_ 

dim(W ±) + dim(W0) >_ ~(g') + ff(gk). If dim(U) > 1 then dim(W0), dim(U) > 

dim(Wo) + dim(U). I 

6. Low dimensional  actions 

Defir~tion 6.1: For any Lie group G let n(G) be the minimum dimension of a 

closed manifold on which G acts almost effectively and smoothly. I 

LEMMA 6.2: For any connected semisimple Lie group G, n(G) < ~(G). 

Proof: Let p : G --* GL(n, R) be an almost faithful real representation of G. 

Then G acts via p on RP  "-1. Let H be the kernel of the action of G on R P  n-1. 



Vol. 76, 1991 LOW DIMENSIONAL ACTIONS 55 

Then H fixes every line in R n, so p(H) C {+r}. It follows that  H is discrete, so 

the action of G on RP n-1 is almost effective. 

k COROLLARY 6.3: Let G be a semJsJmple Lie group. Write G = 1-Ii=l Gi, where 

each a i  is simple. Then n (a )  _< ~(G) - k. 

Proof: Let pi be an almost faithful representation of Gi on R TM. Then G acts 
k 

almost effectively on 1-Ii~=l RP n~-I , so n(G) <_ ~-~i=l(ni - 1). 1 

LEMMA 6.4: Let G be a compact simple Lie group. Then n(G) is the minimum 

codimension of a proper dosed subgroup of G, i.e., n(G) = h(G). 

Proof: This is obvious because any orbit is compact, and therefore an action 

in minimal dimension must be transitive. Any transitive (nontrivial) action is 

almost effective since G is simple• | 

LEMMA 6•5: Let G = 1"I~=1 Gi be a connected semisimple Lie group with £nite 

center. Let Q be a closed connected subgroup of G of codimension not greater 

than h(G) + 1. Suppose NG(Q) is cocompact in G. If  Na(Q) contains a simple 

factor of G then so does Q. 

Proof." We argue by induction on k. The case k = 1 is trivial. Suppose the 

lemma is true for I < k. Suppose NG(Q) contains G1 Let G e k • = IIiffi2 Gi, and let 

~r : G ~ GI/(G' N G1) be the natural map. Since G1 normalizes Q, GI f3 Q and 

a'(Q) are normal subgroups of G1 and G1/(G1NG'), respectively. If QNG1 = G1 

we are done. Suppose then that QNG1 = {e}. We consider the cases ~r(Q) = {e} 

and rr(O) = 7r(a,) separately. 

Suppose 7r(Q) = {e}. Then Q c G'. We will show that 

(1) codim(Ge : Q) <_ h(G') + 1, 

(2) NG,(Q) is cocompact in G', and 

(3) NG,(Q) contains a simple factor of G'. 

It will follow by induction that Q contains a simple factor of G ~. 

To verify (2) simply note that G/NG(Q) = G'/Nb(Q). For (1) we have 

1 + h(G') + h(G1) >_ h(G) + 1 _> codim(G : Q) = dim(G1) + codim(G' : Q), 

from which it follows that 

codim(G' : Q) < 1 + h(G') + (h(G1) - dim(G1)) < h(G'), 
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the last inequality following from the fact that for any simple Lie group H,  

h(H) < dim(H) - 1. Now (3) follows from the inequality codim(G' : Q) < h(G') 

because Na(G °) is cocompact in G and, by definition, h(G') is the minimum 

codimension of a cocompact subgroup of G' which contains no simple factors of 

G I . 

Suppose now that ~r(Q) = ~r(G~). Let x E G~ be an element not in the 

center and let z '  be an element of G' such that xx' E Q. Let h be an element of 

G1 which does not commute with x. Then hxx'h -1 = hxh- lx  ' E Q (since G1 

normalizes Q), so hxh-~x ' .  (xx') -~ = hzh-~x -1 is in Q. This contradicts the 

fact that  Q N G1 = {e}. | 

THEOREM 6.6: Let G be a noncompact simple Lie group with t~nite center. Then 

n(G) is the minimum codimension of a max/real parabolic subgroup of G. If  G 

acts almost effectively on a compact manifold M of dimension n( G) then M is a 

finite equivariant covering of G / S for some maximal parabolic S C G. 

Proo~ The first assertion is that n(G) = h(G). Let S be a parabolic subgroup 

of G of codimension h(G). Then G acts effectively on G/S, so n(G) < h(G). Let 

G act almost effectively on a closed manifold M of dimension n(G). Let x be a 

point in a minimal set of the action. Then Na(G °) is a cocompact subgroup of 

a parabolic subgroup S. Since 

h(G) > dim(M) >_ codim(G : G , )  >_ codim(G : No(G°)) >_ codim(G : S), 

it follows that either S is a proper parabolic of maximum dimension or S = G. 

In either case we must have Na(G °) = S. 
Suppose NG(G °) = G. Then G ° = G, i.e., x is a fixed point. Let p be the 

linear isotropy representation of G on T,(M). By lemma 6.2, for every simple 

Lie group G, n(G) < ~(G). It follows that p is trivial. By a theorem of Stowe 

[15], every point in a neighborhood of x is a fixed point for G, and therefore G 

acts trivially on M. 

We may assume then that NG(G °) = S, where S is a proper parabolic 

of maximum dimension in G. In this case we find that dim(M) = h(G) and 

G o = S °. The parabolic S has only finitely many connected components so G,  

is a subgroup of finite index in S. The G orbit through x is open since it is of 

full dimension in M, and compact since G/S is compact. It follows that G acts 

transitively on M, and 

M ~ GIG, -~ G/We(G °) 
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is a finite equivariant covering. | 

Remark: It is often the case that for a simple non-compact Lie group G with 

finite center, n(G) = n(K) ,  where K is the maximal compact subgroup of G. 

However, this equality does not always hold. For example, for G = SO*(2n), 

n(G) = 4n - 7 (for n > 4). The maximal compact subgroup of G is U(n), and 

n(U(n)) < 2n - 1 since U(n) acts effectively on S 2n-1. | 

THEOREM 6.7: Let G be a connected semisimple Lie group with finite center. 

Write G = 1-I~=~ Gi, where G1,... ,Gk are the connected simple normal sub- 

groups of G. Then n(G) = h(G). If  G acts almost effectively on a closed 

manifold M of dimension n(G), then the action is transitive and the isotropy 

group is a cocompact subgroup of G which does not contain any simple factor of 

G. If  G has no compact factors then the isotropy group is a subgroup of finite 

index in a parabolic subgroup of G, and n(G) k = Ei=l n(Gi). 

Proof." As in the preceding proof, we see that n(G) < h(G). Let G act almost 

effectively on a closed manifold M of dimension n(G). Let x be a point in a 

minimal set of the action. There are two possibilities: 

(1) Na(G °) is a cocompact subgroup of G containing a nontrivial connected 

normal subgroup of G, or 

(2) Na(G °) is a cocompact subgroup of G which contains no nontrivial con- 

nected normal subgroup of G. 

If (2) holds, then arguing as in the proof of the previous theorem we conclude 

that G o is a subgroup of finite index in NG(G °) and M is diffeomorphic to G/G °. 

Thus to prove the theorem it suffices to show that (1) cannot hold. 

We argue by induction on k. If k = 1 then G is simple and the theorem 

follows if G is compact from lemma 6.4 and if G is noncompact from the preceding 

theorem. Suppose the theorem is true for semisimple groups with fewer than k 

factors. We suppose that (1) holds and derive a contradiction. By lemma 6.5, G o 

contains a nontrivial connected normal subgroup of G, say G1. Let G' = 1-I~=~ Gi. 

Let N be the set of fixed points of G1. Then N is a closed submanifold of M 

[15]. The submanifold N is G' invariant since G' commutes with G1. Moreover, 

codim(M : N)  > (I)(G1) since otherwise the isotropy representation of G~ on the 

normal bundle of N is trivial, and by [15] the action of G1 on M would be trivial. 

From the inequalities dim(M) < h(G) and h(G~) = n(G~) < (I)(G~), it follows 
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that 

dim(N) _ dim(M) - @(G1) < h(G) - h(G1) <_ h(G'). 

By the induction hypothesis it follows that G t does not act almost effectively on 

N, i.e., there is a simple factor of G ~, say G2, that pointwise fixes all of N. Let 
G" k = l'Ii=3 Gi. Then repeating the argument we find that 

dim(N) < h(G) - h(G1G2) < h(G"), 

and therefore G" does not act effectively on N. Continuing in this fashion we 

arrive at the conclusion that dim(N) < 0, i.e., N = 0. This is a contradiction, so 

(1) cannot hold. | 

COROLLARY 6.8: Let G be a semisimple Lie group with finite center. Then 

¢(G) > h(G). 

k Remark: If G = I]/=1 Gi has compact factors then it is not generally true 

that n(G) k 50(4) we have n(g) 3. But = E i = I  n(Gi). For example, for g = = 

So(4) = n0(3)@S0(3), and n(so(3)) = 2. Although this example appears to be the 

only way the equality n(G) = ~ n(Gi) can fail for semisimple groups, we will not 

pursue this question further. Note however that the inequality n(G) < ~, n(Gi) 

always holds, even if the factors are not simple. | 

k THEOREM 6.9: Let G = ~i=1 Gi be a connected semisimple Lie group with 

finite center acting on a dosed manifold M of dimension n(G) q- 1. Let K be a 

maxima/compact  subgroup of G. Then M / K  is homeomorphic to S 1, I, or a 

point. In the first case the orbits of K fiber M over S 1. 

Proof." Let x be a point in a minimal set of the action. Then Na(G °) is a 

cocompact subgroup of G. There are two possibilities: 

(1) Na(G °) is a cocompact subgroup of G containing no simple factor of G. 

(2) Na(G °) is a cocompact subgroup of G containing a simple factor of G. 

Suppose (1) holds. Then 

codim(Na(G°~) : G °) = codim(G : GO) - codim(G : Na(G°))  

< dim(M) - h(G) = 1. 

If GO is not a cocompact subgroup of G then necessarily codim(Na(G°) : G°z) = 

1, and the orbit through x is of full dimension in M and noncompact, which 
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contradicts Lemma 1.16. We may assume then that G o is a cocompact subgroup 

of G, of codimension _< h(G) + 1. We claim that K acts transitively on the G 

orbit through x. This suffices (by Mostert's theorem) to finish case (1), because 

the G orbit through x has codimension 0 or 1 in M. 

Write G = (1-Ii*--x Gk).  H, where H is the maximal compact normal con- 

nected subgroup of G. Then using the notation of Proposition 2.10, G ° = LYAN 
for some closed subgroup Y C EH. Let Ki be the maximal compact subgroup 

of Gi. Then K = (I'[~=l Ki ) .  H, and since Ki acts transitively on Gi/LiAiNi, it 

follows that  K acts transitively in G/LYAN. 
Now suppose (2) holds. Before proceeding with the proof, we describe 

an example which the reader should keep in mind. Take the direct sum of the 

standard representation of SL(2, R) with the trivial one-dimensional real repre- 

sentation, and consider the associated projective action on RP  2. This action 

has exactly one fixed point. Now consider the action of SL(2, R) × SL(2, R) on 

RP  2 x RP  1 obtained by taking the direct product of the previously described 

action with the standard action of SL(2, R) on RP 1. The fixed point set of the 

normal subgroup {e} x SL(2, R) is a copy of RP  1. 

To continue with the proof of the theorem, note that by lemma 6.5, G o 

contains a normal subgroup of G; let G1 be the largest normal subgroup of G 

contained in G °, and let G ~ = ZG(G1) be the complementary subgroup. Let N 

be the set of G1 fixed points. Then, reasoning as in the proof of 6.7, we conclude 

that the normal isotropy representation of GI is almost faithful, and therefore 

that 

d i m N  _< d i m M  - ~(GI) _< (h(G) + 1) - (h(Ga) + 1) <_ h(G'). 

If dim(N) < h(G'), then we may argue as in the proof of 6.7 to obtain a 

contradiction. We may assume therefore that h(G f) = d imN,  and thus that 

h(G~) + 1 = ~(G). By corollary 6.3, Ga must be simple. Moreover, G' acts 

almost faithfully on N (since GI is the largest normal subgroup of G fixing z), 

and therefore by 6.6, G ~ acts transitively on N with cocompact stabilizer. It 

follows that K ' ,  the maximal compact subgroup of G ~, acts transitively on N. 

Let KI be the maximal compact subgroup of G1 (if G1 is compact we are 

setting Ka = G1). Then K1 pointwise fixes N and therefore acts trivially on 

Tx(N). Let V C Tx(M) be a Kl-invariant complement to Tx(N). Note that 

d imV = h(G1) = 1 = ¢~(G1). We now require 
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LEMMA 6.10: Let H be a simple Lie group with finite center and L a max/ma/ 

compact subgroup. Let p be an a/most faithful representation of  H on a r e a /  

vector space W of dimension h( H) 4- 1. Then the L-orbits in W\{0} are spheres 

of dimension h( H). 

Proof: The action of H on the projective space P(W) is transitive: this follows 

from 6.6 if H is noncompact and from the definition of h(H) if H is compact. 

Moreover, in both cases L acts transitively on P(W). Since L leaves invariant 

the metric spheres for some positive definite L-invariant bilinear form on W, it 

follows that the nontrivial L orbits are spheres of dimension h(H). | 

As remarked above, the normal isotropy representation of G1 at x is almost 

faithful. From 6.10 it follows that the nontrivial K1 orbits in V have dimension 

h(G1). We now apply the differentiable slice theorem for actions of compact 

groups [11]. It follows from this theorem that in a neighborhood of N the di- 

mension of the orbits of K = K1 • K '  is the dimension of N (the K orbit of z) 

plus the dimension of the non-trivial orbits in the normal isotropy representation 

of K~. The former is h(G') and the latter is h(G1) (because g l  C K~). Thus 

there are g orbits of dimension h(G') + h(G1) = h(G) = dim M - 1. Now we 

can apply Mostert 's theorem to conclude the proof. | 

Remark: The proof of the theorem shows that if G acts almost effectively on 

a compact manifold of dimension less than ¢(G),  then there are no fixed points 

for the action. Note that ~(G) = n(G) + 1 for G = SL(n,R) and G = Sp(n, R). 

In all other cases ~(G) > n(G) + 1. Both SL(n, R) and Sp(n, R) have actions in 

dimension n(G) + 1 with fixed points. | 

THEOREM 6.11: Let G be a connected semisimple Lie group with finite center 

acting a/most effectively on a dosed manifold M of dimension n(G) + 1. Let 

M / G  be the orbit space of the action with the quotient topology. Then M / G  

is obtained from S 1 or I by identifying possibly infinitely many connected, open 

subsets to points. In particular, every G orbit is either compact or open. 

Proof." If G acts transitively the assertion is immediate. Otherwise, M / K  is 

homeomorphic to S 1 or I.  There is a natural quotient map M / K  ~ M / G  which 

commutes with the quotient maps p : M -* M / K  and s : M ~ M/G.  The 

C-orbits in M are connected, K-saturated subsets of M, so for any z E M, 

p(G. x) is a connected subset of M / K .  If p(G. x) is not a single point then it 
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contains an open subset of M/K and therefore G. z contains an open subset of 

M, so G. z is open. Thus p(G • z) is an open connected subset of M/K, and 

q(p(G, z)) = s (G.  x) is a single point in M/G. | 

In the next section we construct, for any noncompact semisimple Lie group 

G, a smooth action of G on a closed manifold of dimension n ( G ) + l  with infinitely 

many open orbits. The following lemma shows that the open orbits may not 

accumulate on a fixed point of the action. 

LEMMA 6.12: Let G be a noncompact semisimple Lie group acting smooth/y and 

almost effectively on a dosed manifo]d M o[ dimension n( G) + 1. Let {zi}ieN be 

a sequence of points in M contained in distinct G orbits, and suppose the orbit 

o[ each xi is open. Then every limit point of {zi}i~N is contained in a compact 

G orbit of dimension n(G). 

Proof'. By Theorem 6.11, one sees that  if z is a limit point of {zi}, then either 

z is contained in a compact codimension one G-orbit (which coincides with a 

K--orbit) or z is a G-fixed point. We will show that the latter is not possible. 

Recall from the proof of 6.9 that if z is a fixed point then G is locally 

isomorphic to either SL(n, R) or Sp(n, R), and the isotropy representation p of G 

on Tz(M) is the "standard" representation. Let b be a split Cartan subalgebra 

of g, and H the connected subgroup of G with Lie algebra b. Then p(H) has no 

invariant lines, i.e., 1 is not an eigenvalue of p(H). Then by [7], z is a stable, 

isolated fixed point of H. On the other hand, there is a sequence of closed G 

orbits converging to z ( for each i choose a closed G orbit separating G .  zi and 

G. z j). The stabilizer of a point in each of these orbits is a maximal parabolic of 

G, and therefore contains a conjugate of H. It follows that there is a sequence 

of H-fixed points converging to z, which is a contradiction. II 

7. C o m p l e m e n t s  

COROLLARY 7.1: Let M be a closed two manifold admitting an effective action 

of a simple non-compact Lie group G. Then M is homeomorphic to T 2, S 2, R P  2, 

or the Klein bottle. The group G is locally isomorphic to SL(2, R), SL(3, R), 

SL(2, C), or SO(2, 2). All of these groups have a/most effective actions on S 2 and 

R P  2. On/y SL(2, R) may act on T 2 and the Klein bottle. 

Proof." By inspecting tables I and 3, one finds that G must be locally isomorphic 

to one of the four groups listed. By theorem 6.9, if SL(2, R) acts effectively on 
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a closed two manifold M, then M/SO(2)  is homeomorphic to S 1, I ,  or a point. 

The last possibility obviously does not occur. By a result of Mostert [10], M 

is homeomorphic to T 2, S 2, RP  2, or the Klein bottle. Clearly, SL(2,R) has an 

effective action on each of these manifolds. 

Suppose then that G is one of the groups SL(3, R), SL(2, C), or SO(2, 2). 

Then by theorem 6.6, M is a finite covering of G/P  for a maximal parabolic 

P C G. One sees by inspection that M is either S 2 or RP 2. | 

COROLLARY 7.2: Let M be a closed three manifold admitting an effective action 

of a simple non-compact Lie group G. Suppose G is not loca/ly isomorph/c to 

SL(2, R). Then M is homeomorphic to one o / the  following: S 2 x S 1, RP  2 x S 1, 

S 2 × I/(x,O) ~ ( -x ,1 ) ,  RP  3 ~ RP  s, or s3 / r ,  where r is a finite subgroup of 

0(3). The group G is locally isomorphic to SL( 3, R), SL( 4, R), SL(2, C), SO(2, 3), 

SU(2,1), or SO(4,1). All of the manifolds listed admit an almost effective action 

of SL(3,R). 

Proof." Referring to tables 1 and 3 we find that G must be locally isomorphic 

to one of the groups listed. We leave to the reader any subtleties involving finite 

covers, and assume that G is in fact isomorphic to one of the groups listed. For 

G = SL(4,R), SO(2,3), SU(2,1), and SO(4,1) we have n(G) -- 3, and M is a 

finite covering of G/S,  where S is a maximal parabolic of minimal codimension 

in G. It is straightforward to show that SL(4, R ) / S  ~- RP  s, SO(2, 3) /S  ~- S 2 x 

I / (x ,  O) ~ ( - x ,  1), SO(4,1)IS ~- RP s, and SU(2, 1)IS ~- S 3. 

Suppose then that G is isomorphic to SL(3, R) or SL(2, C). Then by 6.9, 

M / K  is homeomorphic to S 1, I ,  or a point. In the latter case K acts transi- 

tively on M. Since K is isomorphic to SO(3) or SU(2), it follows that  M is 

homeomorphic to Ss/F, where I' is a finite subgroup of 0(3). We suppose then 

that M / K  is homeomorphic to either S 1 or I. By a result of Mostert [10], M is 

homeomorphic to S 2 x S 1, RP 2 x S 1, S 2 x I/(x, 0) r,~ ( - x ,  1), RP  s ~ R P  s, S s, 

or RP  a. We leave it to the reader to verify that all these manifolds admit an 

almost effective action of SL(3, R). | 

It is well known ([11]) that if a compact group K acts smoothly on a 

compact mamfold M then there is a real representation (p, V) of K and a K- 

equivariant map $ : M ~ V. The following corollary gives an analogue for lowest 

dimensional actions of semisimple groups. 
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COROLLARY 7.3: Let G be a semisimple Lie group with finite center. If  G 

acts a/most effectively on a dosed manifold M of dimension n( G) then there 

is a representation p : G --* GL(n, R), and a G-equivariant, finite-to-one m a p  

: M --* R P  n - 1 .  

Proof: By Theorem 6.7, the action of G on M is transitive and G~ is of finite 

index in NG(G ° ). The group NG(G °) is real algebraic, so by Chevalley's theorem 

there is a real representation p : G ~ GL(n,R) such that  p(NG(G °) is the 

stabilizer in p(G) of a line L in R n. The p(G) orbit through L is a compact 

submanifold of R P  n-1 diffeomorphic to p(G)/p(Na(G°)), and the natural  map  

M ~- G/G~ ~ p(G)/p(NG(G°)) 

is a G-equivariant, finite-to-one embedding of M in R P  n-1. | 

ExampIe 7.4: Let G be a noncompact semisimple Lie group. In this example, 

we construct a smooth action of G on a closed manifold of dimension n(G) + 1 

with infinitely many  open orbits. 

Let f be a smooth real valued function on S 1 with countably infinitely many  

zeros. The vector field f d integrates to give a smooth action of R on S 1 with 

infinitely many  fixed points. Let P be a maximal parabolic of G, and p : P ~ R 

a nontrivial additive character. We let P act on S x via p and the action of R 

previously defined. Then the induced action of G on G x p S x has infinitely many  

open orbits. If  P is a parabolic of codimension n(G), then G x v  S 1 is a closed 

manifold of dimension n(G) + 1. | 

Example 7.5: Retaining the notation of the previous example, we construct a 

continuous action of G on a closed manifold of dimension n(G) + 1 with infinitely 

many  open orbits accumulating on a fixed point. Let f be a smooth real valued 

function on [ -1 ,1]  with countably many zeros accumulating at 1 and suppose 

also that  f ( - 1 )  --- 0. The vector field f d  integrates to give a smooth action of R 

on the open interval ( - 1 , 1 ) .  The manifold G × p  ( - 1 , 1 )  has two ends, and the 

action of G extends continuously to the closed manifold M obtained by taking 

the one point compactification of each of the ends. The action of G on M has 

infinitely many  open orbits accumulating on a fixed point. | 

In this paper  we have considered only actions on compact manifolds. It  is 

reasonable to ask for the minimum dimension of a smooth manifold, not neces- 

sarily compact,  on which a connected Lie group G may act. This is equivalent 
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to asking for the minimum codimension of a closed subgroup of G. The topic of 

maximal subgroups of Lie groups has been studied by several authors (cf. [5], 

[91), and in particular it is known [121 that if G is real and semisimple then a max- 

imal subgroup is either parabolic (and therefore cocompact) or reductive (and 

therefore not cocompact). Since it is known what all the maximal subgroups of 

real semisimple Lie groups are, it is possible in principle to compute the mini- 

mum codimension of a subgroup. It appears to be the case that a subgroup of 

minimum codimension is always parabolic, although we have not verified this. 

Finally, we note that using Theorem 6.7 and results of Mostert one may 

extend the results of this paper to compact manifolds with boundary, the principle 

fact being that the boundary components are invariant. We state the relevant 

theorem and leave the proof to the reader. 

k THEOREM 7.6: Let G = I-Ii=l Gi be a connected semisimple Lie group with ilnite 

center acting on a compact manifold M of dimension n(G) + 1. Then M has at 

most two boundary components, each of which is of the form G/Q, where Q is a 

cocompact subgroup of G which does not contain any slmple factor of G. Let K 

be a maxima/compact subgroup of G. Then M/  K is bomeomorphic to S l, I, or 

a point. If  the boundary of M is nonempty, then M / K  is homeomorphlc to I. 

8. The  tables 

In table 1 we have listed the complex simple Lie algebras according to type. In 

the column labelled "s" we have listed the maximal paraboHcs of minimal codi- 

mension, the symbol sa denoting the parabolic s(II\(t~}) (see §2). The symbol 

[}c(g) denotes the complex codimension of the maximal parabolic of minimum 

codimension. The symbol/l~(g) denotes the minimum real dimension of a faithful 

real representation of tJ. 
In table 2 we have listed the simple real, non-complex Lie algebras, along 

with their Satake diagrams (cf. Definition 4.4). In the column labelled "5" we 

have listed the maximal parabolics of minimal codimension, the symbol s~ denot- 

ing the parabolic 5(II(g, a)\{~}). The symbol h(g) denotes the real codimension 

of the maximal parabolic of minimum codimension. 

In table 3 we have listed the simple real, non-complex Lie algebras, along 

with their maximal compact subalgebras (in the column labelled 'T'). In the 

column labelled "~(g)" we have listed the minimum real dimension of a faithful 

real representation of g. 
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T a b l e  1 

65 

g D y n k i n d i a g r a r n  s h c ( g )  ~ ( g )  

a .  ( . > 1 )  .~* - f~ - " . . . .  . , ,  s a t , s ~ , . ,  n 2 n + 2  

b .  (.>_2) "1 - * "'" * :~ * -%1 (n>2)  4 n  + 2 
• . -x  * -  Sa2 (n=2) 8 

o~ 2 n  - 1 

o - - ~ 2  - - " ' - -  o 4ffi o 
¢ .  (n_>3) .,1 * . - t  °,, Saa 2 n  - 1 4 n  

O a n - -  t 

D n ( n > 4 )  o - -  o - - . . . -  o ° n - :  S a t  
a t  e 2  

o a  n 

? 
¢6 I Sa t  ~ Sae 

. - j . -  o - o -ooa 
a 0 a 4 a ~  

a2  
o 

t7 l .eat 
. . . . .  o 

? 
ts I Sa, 

: . - : , - : . - : ,  -:, - : . - : t  
f o - -  o ~ o - -  o 

4 Q1 a~l a 3  a 4  

o ,4~ o 
g2 oI °~ 

2 n  - 2 4 n  

14 54  

27 112  

57  4 9 6  

5a l ,  sa4 15 52 

5a i ,  SoI 5 14 
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Table 2 

g Satake d iagram Dynkin  diagram $ h(g) 

t( R)  o - : ,  . . .  o o - o  . . . . .  o 

- -  - -  - -  0 - -  0 . . .  0 
s [ ( n  -I- 1, H )  ,,'1 0, : .  ... °,,,° o,,,'+1 ~, ~,~ -°,,, ST, , ..ST,,, 4 n  

"o 1 - ~ '  . . .  " o '  - - . + 1  

I 

~1 ~,-1 ~, 5T1 2 ( p + q ) - 3  
p > q > l  

I 
o - -  o . . .  o - -  

a n _  1 a p  a p _  1 

%1 _ V . . . .  - ° ' o  - 1  
suc",~ ~s "~ oo, __o . . . . .  _ o ~..o s~l (~>2) 4q - 3 

a l  ~ q - - 1  ° q  O>~)  o - o . . . .  ~ , ( v = 2 )  4 
° 2 q - - 1  e ' 2q - -2  e ' q + l  

. . . .  ~ - -  0 0 su(p, 1) o • ~*a "'" , oi  o - ,  oi  STI 2p - 1 

- - . . .  0 - -  ; ' t "  - - . . . o = ~  • o - - . . . - -  o = ~ ' 0  
$o(p,q) ~°1 . ,  . z ° . - *  "~1 ~ , - 1  ~ ,  s ~  z p + q - 2  p>q>1 -T- 

p + q  odd 

. ( . , 1 )  o - :  ... . ~ .  o - i  "~  ~i  5TI p - 1 
p even 

o - -  o . . .  o ,¢= o o - - . . . - -  o .4= 0 

_ ~ . . . . . . .  % ' ,  

• v ( p , q )  I o . . . . .  ° ~ °  4 ( p + q )  ~2 ~3q-2  ~ ' 2 .  $ ~ 2  - - 5  
p > q  • ~.  • - . . . -  • - : 

a n  a n - -  1 a 2  + 1  
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g Satake diagram Dynkin diagram $ h(g) 

s p ( q , q )  , -  o - .  . . . .  - o - . ~  o o - . . . -  o ~ o s ~ , ( q > 2 )  8 q - 5  
~1 Q2 a 2 q  ~ 2  ~ 2 q - - 2  ~ 2 n  

q > l  s ~  4 ( q = ~ )  1 0  
0 ~ ¢ - - 1  O ~ q _  1 

(q q) o - o - . . . - o  o - o . . . . .  o ~.q 

g ) 4  0 %  o ~  

O a f  

(q + 2 q) .-1 . . . . . .  o = .  ~.q - -  o - . , . -  o - - - -  $ ~ 1  
$ 0  ~ a 2  'a'l ~ ' q - I  ~'q 

g ) l  o ,~¢+  t 

e a ~ -  1 

(pq) o ...... ;+_. . . . . .  ...- o ~o p + q  
5 0  ~ c. 1 oq a 1 ~ l  ~ q - x  ";q 5"~1 - -  2 
p--2>q>l ea~ 
p 4 " q  e v e n  

( ) :~ o 
S O p ,  1 o - " '" " ~ 1  

O l  
p ) l  e~' F... ~ 

p o d d  

s~ p- 1 

• a n - -  1 

( 2 n )  :, ..8 ... ~, .... BO_* - -  o - -  o 
a 2  

n > 3  o a .  

n e v e m  

- -  - -  o < =  o 

~ n - ~  CVn s ~ 2  4 n  - -  7 

O a n - -  1 

0 " ( 2  ) :~ : .  o ... ,,q D, - -  o - -  - -  . . . o - -  • ~ 2  
a 2  

n ) 3  o a  n 
n o d d  

- -  - -  o ,¢= o 

a n _  3 ( I n - -  1 s ~  2 4 n  - 7 

ce(~) 
0 a 2 0 ~ 2  

I I 
o - -  o - -  o - -  o - -  o $ ~ t ~ 5 ~ 6  o _ : -  o - : -  o 

a 6 a 4 a I ~ 6  ~ 5  ~ 4  ~ 3  ~'1 

1 4  

¢~(2) 

0 a 2 

I o -  o = ~  o - _ o  
o - -  o - -  o - -  0 - -  o ~ 2  ~ 4  ~ 3  a 1 " ~ 2  

a 6  ~& a 4  ,~$ a I 

21 
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g S a t a k e  d i a g r a m  D y n k i n  d i a g r a m  s h ( g )  

0 0 2  

C 6 ( 1 4 )  o * ~ o :~,  o - - - . - o ~:  ~: s ~ :  2 1  
0 6  m S  ~ 4  o ~  ~ 

¢ 6 ( - - 2 6 )  o * ~ o ~ o - - - • - o ~, ~ +  s ~ : , s ~ ,  1 4  

~ 6  0 5  0 4  o 3  ~ I  

0 a 2 0 ~ 2  

I I s ~ ,  27 
C 7 ( 7 )  . . . .  o - -  o o - -  o - -  o - -  o - -  o - -  o 

• a 2 

¢ 7 ( - 5 ~  ~ o - o : ~  o - o 3 3  
. . . .  o • + o - o ~ :  ~ a  ~ 4  ~ e  - , . , , i  - -  

0 7  0 8  ° l  a 4  Q 8  0 1  

¢ T ( - - 2 , 5 ~  -J o - -  o ,,<= o 2" I  
. . . .  o . . . - o + :  o'6 ~.,, s-~_,.,, - _  ,k ~r 0 

a 7 0 8 o g  o 4 o~t o I 

o a ~  o ~ 2  

Cs(s) o • o o ~ I s ~ ,  57  
. . . . .  o - o o - o -  o - o - o - _ o  - _ o  

0 8  a T  0 6  ~S ° 4  ~ 8  ~1  ~ 8  0 7  ~ 6  ~ |  a'4 o ~  a I 

• a 2 

e 8 1 - 2 4 )  o o o , ~ ~ - _o ~ ~ - ~ $ ~ 8  5 7  . . . . .  • ~ 0 a 8  0 7  0 6  a l  

a 8 a T a a 0 |  • 4 a S a |  

f o - o =:. o - o o - o =:. o - o $ ~ : , S ~  4 1 5  
4 ( 4 )  a :  a s a a  0 4  ~ :  ~:1 ~ 'a a'-4 

o 
h ( - 2 0 )  ", - ",  + ",  - . . .  

o 

g2(2) o1 ,.: +: +: 
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Table 3 

69 

Typ~ ~ e h(~) ¢(~) 

AI st(n, R) so(n) n - I n 

4n (n>2) 
AII st(n, H) sp(n) 4n - 4 6 (.=2) 

2(p + q) - 3 4(v + q) 
A I I I  su(p, q) S(U(p) × U(q)) ((p,q)#(2,2)) (p+q>4) 

V>q>l 4 (p----q=2) 6 (p+q=3,4) 

p + q - 2  
BDI so(p, q) so(p) x so(q) ((v,O#O,*)) p + q 

(p+q>4) 3 (p=q=s) 

DIII so*(2.) u(n) 
4n - 7 (.>4) 4n (.>4) 

3 (.=2) 6 (.=2) 
6 (.=4) 8 (.=4) 

CI sp(n,R) u(n) 2n - I 2n 

cII  $p(p, q) 5p(p) x sp(q) 
p+q>3 

4(p + q) - 5 
((p,q)#(2,2)) 4(p + q) 
10 (p-----q=2) 

EI ¢6(6) sp(4) 14 _> 27 

EII c~(2) 5u(6) x 5u(2) 21 _~ 27 
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Type g e h(g) ¢(g) 

EIII ¢e(14) 5o(10) x 50(2) 21 > 27 

EIV ¢e(-26) f4(-52) 14 > 27 

EV ¢7(7) 5u(8) 27 > 56 

EVI 57(-5) 5o(12) × 5u(2) 33 _> 56 

EVIl 57(-25) ¢6(-7s) x 50(2) 27 >_ 56 

EVIII es(8) 5o(16) 57 _> 248 

EIX f8(--24) ¢7(-13s) x 5u(2) 57 > 248 

FI f4(4) 5p(3) × su(2) 15 > 26 

FII f4(-2o) 50(9) 15 > 26 

G g2~2) su(2) x su(2) 5 > 7 
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